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JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM 
CALIFORNIA INSTITUTE OF TECHNOLOGY IOM 335N-20-01 

December 16, 2020 
 

To:    Modelers and Data Analysts  

From:    James G. Williams and Dale H. Boggs  

Subject: The JPL Lunar Laser Range Model 2020  
 
 
1. Introduction  
The lunar laser ranging (LLR) experiment measures the round-trip time of flight of a 
laser pulse fired from an observatory on the Earth, reflected from a corner-cube 
retroreflector array on the Moon, and received back at the observatory. We now fit 50 yr 
of observations stretching from 1970 to fall 2020. During those decades, the accuracy of 
the range measurements has improved from decimeters to millimeters. An accurate model 
is needed to analyze those ranges. Figure 1 shows the annual weighted rms post-fit 
residuals for a fit spanning 1970–2020. Figure 2 shows the annual weighted rms residuals 
for 1987 – March 2020. The rms residuals for 2015–2020 are 1.0 to 1.1 cm.  
 

 

  
 
Figure 1. Annual weighted rms residuals for DE440, 1970 – March 2020.  
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Figure 2. Annual weighted RMS residuals from 1987 – March 2020.  
 
A worldwide network of satellite laser ranging (SLR) stations and LLR stations is 
coordinated by the International Laser Ranging Service (ILRS) [Pearlman et al., 2002], 
but only a few laser sites can range the distant Moon. To set the scale, the semimajor axis 
of the lunar orbit is 384,399 km, the mean radius of the Earth is 6371 km, and the mean 
radius of the Moon is 1737 km. Moving at a speed of 299,792.458 km/sec, a laser pulse 
takes ~2.5 sec to make the round trip. Reviews of the LLR technique are available from 
Dickey et al. [1994], Murphy [2013], and Müller et al. [2019].  
 
This memo describes the model used in 2020 by the program LPRED to calculate an 
LLR time of flight and compare with an observed value to get a residual. It updates a 
previous memo (Williams and Boggs, 2015). This memo is more detailed than an outline, 
but it is still an overview. Many details are lacking and some familiarity with 
astronomical and geophysical processes and nomenclature is assumed. We note that the 
design and construction of an analysis program is a compromise between accuracy and 
pragmatism.  
 
For the terrestrial model, the IERS Conventions (2010) [Petit and Luzum, 2010] is an 
indispensible companion to this memo. We make frequent reference to sections of that 
document. The models for spacecraft navigation are another invaluable resource [Moyer, 
2000]. Here we do not describe the numerical integration programs for calculating solar 
system orbits and lunar rotation. There are two integration programs at JPL that embody 
very similar physical models. These dynamical models are described by Park et al. 
[2020]. Since 2014 we have added geodetic precession to the integrated physical libration 
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model, solar Lense-Thirring effect to the integrated orbits, a t2 term to the Earth’s J2 that 
perturbs the lunar orbit, and solar radiation pressure affecting the lunar orbit.  
 
2.  LLR Range Data  
The transmit time at the ranging station is denoted T1, the time of the reflection is T2, 
and the receive time is T3. The round-trip light time ∆t = T3−T1 is about 2.5 sec, but it 
varies ±7% from about 2.3 to 2.7 sec. The observed round-trip light time ∆t gives the 
one-way “range” r when multiplied by half the speed of light c, r≈c∆t/2, or 15 
cm/nanosec. Since the Moon moves ~2.5 km and the Earth rotates ~1 km while the laser 
pulse is in flight, the foregoing one-way range is a convenient approximation rather than 
a geometric range at a single time.  
 
Multiple detections of one or more photons are combined into less frequent normal 
points. Each normal point may combine several minutes to several tens of minutes of 
photon returns. An LLR observation includes the transmit date and time in UTC 
(Coordinated Universal Time), receive minus transmit time in UTC seconds (round-trip 
light time), station and retroreflector array IDs, number of photons, a range uncertainty, 
and the laser wavelength. Environmental parameters include atmospheric pressure, 
temperature, and relative humidity at the station. The normal point may also have its time 
span, the signal-to-noise ratio, and an indicator for the quality of the range identification.  
 
The annual number of normal points is shown in Fig. 3 for three transmitted laser colors.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The annual number of normal points in DE440 for 3 transmitted laser colors.  
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The lunar laser ranging stations at McDonald Observatory, Texas; Observatoire de la 
Côte d’Azur, France; Haleakala Observatory, Hawaii; Apache Point Observatory in New 
Mexico; and Matera, Italy provided the extended data sets that are analyzed by the LLR 
programs. Shorter data sets are available from Crimea in 1974 and the 1980s, then in the 
Soviet Union, and Wettzell, Germany, 2018 – 2020. The number of ranges and their time 
spans are given in Table 1. Collections of LLR data are available from the International 
Laser Ranging Service archives at  

ftp://cddis.gsfc.nasa.gov/pub/slr/data/npt_crd/  
ftp://edc.dgfi.tum.de/pub/slr/data/npt_crd/  

and from the Paris Observatory Lunar Analysis Center at  
http://polac.obspm.fr/llrdatae.html .  

For Apache Point normal points, consult  
http://physics.ucsd.edu/~tmurphy/apollo/norm_pts.html  

for ranges and notes.  
 
Table 1. Observations from LLR stations, March 1970 to March 2020.  

 
       Station  Number of Ranges Time Span 
McDonald 2.7 m, Texas   3440 1970 – 1985 
MLRS, Saddle site, Texas     275 1985 – 1988 
MLRS, Mt. Fowlkes site, Texas    2870 1988 – 2013 
Crimea, USSR        28 1974, 1982 – 1984 
Observatoire de la Côte d'Azur, France 16425 1984 – 2020 
Haleakala, Hawaii     694 1984 – 1990 
Apache Point, New Mexico   2452 2006 – 2016 
Matera, Italy     248 2003 – 2020 
Wettzell, Germany        70 2018 – 2020 
Total 26502 1970 – 2020 

 
There are five target retroreflector arrays on the Moon. These flat arrays of corner cubes 
are located at the three Apollo 11, 14, and 15 landing sites and on the Lunokhod 1 and 2 
rovers delivered by the Luna 17 and 21 landers. The Apollo 15 array at the Hadley site is 
the largest and it provides the strongest returned signal. Table 2 provides some statistics.  
 
Table 2.  Observations obtained from retroreflector arrays, March 1970 to March 2020.  

        Lunar Site Number of 
Ranges 

Percentage Time Span 

Apollo 11, Tranquility    3172 12.0% 1970 – 2020 
Apollo 14, Fra Mauro    2993 11.3% 1971 – 2020 
Apollo 15, Hadley  17448 65.8% 1971 – 2020 
Lunokhod 1    1260   4.8% 1974, 2010 – 2020 
Lunokhod 2, Le Monnier    1629   6.1% 1973 – 2020 
Total  26502 100% 1970 – 2020 
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Apollo 11 landed in 1969 and was ranged shortly after, but our data set eliminates the 
less precise 1969 ranges and starts in March 1970. The location of Lunokhod 1 was not 
known well enough to range until it was found in 2010 [Murphy et al., 2011]. Recently, 
observations during 1974 at Crimea were located [Yagudina et al., 2018].  
 
3.1  LLR Model  
We need to compare the observed ∆t = T3−T1 to a computed value in order to fit the 
model parameters to observations. The model for the computed value is the subject of 
this section.  
 
3.2  MJD and JD  
The calendar date and transmit time are converted to Modified Julian Day (MJD) and 
Julian Day (JD), JD = MJD + 2400000.5. For example, noon on January 1, 2000 is MJD 
51544.5 and JD 2451545.0. The example is the J2000 reference time. (Note that the D in 
JD and MJD stands for “day”, not the corruption “date.”)  
 
3.3  Station Location  
To the Earth-fixed geocentric ranging station spherical coordinates at J2000, the LLR 
software adds slow linear station motion in the radial, east, and north directions for 
Year(T1)−2000. For T1 in years  
 

  . (1) 

 
Station motion is typically a few mm/yr vertically and a few cm/yr horizontally. Station 
coordinates typically refer to the intersection of axes of the mount. For most stations, the 
transmitting and receiving telescopes coincide, but they were separate at the Haleakala 
site.  
 
3.4  Air Pressure Loading and Center of Mass Motion  
A local increase in air pressure depresses the Earth’s surface. This is a small correction of 
no more than a few millimeters. The LLR software approximates loading from 
atmospheric pressure variation with a perturbation of the vertical coordinate of  
 
 ∆R = ∂R/∂P ∆P,  (2) 
 
where ∆P is the pressure variation about the mean. See Table 3 for the rms pressure and 
radial variations by station. Although this radial variation and some of the partials ∂R/∂P 
are approximations, the effect is only a few millimeters. The IERS Conventions (2010) 
discusses effects on station position in chapter 7. The effect of diurnal and semidiurnal 
pressure variations are in section 7.1.3. At the LLR sites, they are <1 mm and we do not 
include them in the model.  
 
 

RSTN(T1) =RSTN(2000)+
dRSTN

dt
T1− 2000( )
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Table 3. Mean pressure and RMS pressure variation, and the influence on the vertical 
coordinate.  
 
  Station Site  Mean Pressure, 

mbar 
RMS Pressure 

Variation, mbar 
∂R/∂P  

mm/mbar  
 

RMS Radial 
Variation, mm 

McDonald  
 2.7 m,  Texas  

798 4 −0.47 1.8 

MLRS Saddle,  
  Texas  

808 3 −0.47 1.4 

MLRS Mt. 
Fowlkes,  
  Texas  

800 4 −0.47 1.7 

OCA/MEO,  
  France  

875 7 −0.34 2.2 

Haleakala,  
  Hawaii  

709 2 −0.15 0.3 

Apache Point,  
  New Mexico  

728 4 −0.48 1.7 

Matera, Italy  962 4 −0.27 1.1 
Wettzell, 
Germany  

944 4 −0.44 1.7 

Crimea, Soviet 
Union  

949 3 −0.25 0.9 

 
 
Seasonal mass variations of atmosphere and oceans cause an annual translation of the 
center of figure of the Earth with respect to the center of mass (Wu et al., 2012, 2017). 
We apply the following correction to the center of figure coordinates of stations to get 
center of mass coordinates  
 
 ∆𝑅! = −𝐴!cos )

"#
$%&."&

*𝑡 − 𝐽2000 − 𝛿𝑡!01  , (3) 
 
where ∆𝑅! are the corrections to the three coordantes, Aj are the three coefficients,  dtj 
corrects day of year to zero phase, and t is MJD. We use the amplitudes and phase-related 
times in Wu et al. (2017). The corrections are small, a few millimeters in size.  
 
3.5  UT1 and Polar Motion at T1  
An input table of TAI−UT1, and polar motion X and Y is interpolated at the MJD value. 
UT1 follows the variable daily rotation and polar motion describes the axis of daily 
rotation (not the instantaneous spin axis) with respect to the body axes. The Earth’s 
equator rotates with a speed of 465 m/sec, so UT1 values accurate to ~2 µsec are needed 
for 1 mm global rotation accuracy.  
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3.6  Solid-Body Pole Tide  
As the Earth’s axis of rotation moves with respect to its body, the oblate shape tends to 
follow the moving axis. The pole tide is computed for X−XP and Y−YP, where 
XP=0.056"+0.0021"/yr (Year–2000) and YP=0.346"+0.0037"/yr (Year–2000) in the LLR 
software. The IERS Conventions advocates third degree polynomials for XP and YP. The 
resulting pole tide distortion is added on to the station vector. The subtraction of XP and 
YP is intended to separate out the annual wobble and (14 month) Chandler wobble so that 
appropriate Love numbers (h2=0.6207 and l2=0.0836) can be used for that frequency 
band. For the coefficients of IERS Conventions equation (7.26), the LLR software uses 
32.4 mm/" for the radial component and 9 mm/" for the horizontal components. The 32.4 
mm/" coefficient is 2% smaller than the value in the Conventions, but loading at the LLR 
stations from the ocean’s pole tide will reduce the coefficient by a few percent. The 
combined annual and Chandler wobbles can reach ~0.3"	maximum, so the radial 
variation can reach ±1.0 cm and the horizontal variation can reach ±3 mm. What happens 
to the distortion due to the linear or slow polynomial parts of X and Y? It depends on 
larger Love numbers and it becomes part of station motion. The radial rate from the linear 
motion could reach 0.4 mm/yr.  
 
3.7  Time Transformations at T1  
Although the LLR observations are measured with UTC, the JPL lunar and planetary 
ephemeris uses Barycentric Dynamical Time (TDB), a time appropriate for coordinates 
referred to the center of mass (barycenter) of the solar system. The UTC transmit time is 
first transformed to International Atomic Time (TAI). The latter is a continuous time 
scale, whereas UTC has discontinuities designed to keep UTC close to UT1, a “time” 
based on the rotation of the Earth. Over the decades spanned by the LLR data, those 
discontinuities accumulate; from mid-2012 until mid-2015 TAI=UTC+35 sec. From mid-
2015 to the start of 2017, TAI−UTC is 36 sec, and subsequently up to 2020 the difference 
is 37 sec. Adding 32.184 s to TAI would give Terrestrial Time (TT), TT=TAI+32.184 
sec. Prior to 1972 there were also discontinuous UTC rate changes that require 
corrections to the length of the second used for ranges before 1972.  
 
The transformation from TT or TAI to TDB involves relativistic effects. Viewed from the 
solar system barycenter, terrestrial clock rates vary as the velocity and external potential 
at the center of the Earth change as the Earth follows its path about the Sun. We present 
the transformation in two parts: one depends on the position of the station with respect to 
the Earth’s center, and the other depends only on the orbital motion of the Earth. The 
station, which is displaced from the center of the Earth, experiences a rotational velocity 
and a slightly different solar potential than the geocenter. With both effects, the clock 
rates are connected by  
 

  , (4) 

 
where U is the (positive) external potential from the Sun, Moon, and planets at the 
geocenter, vE is the velocity of the Earth’s center with respect to the solar system 
barycenter, vS is the velocity of the station with respect to the Earth’s center, and RS is 

dTDB
dTAI

≈1− LB +
(vE + vS)

2

2c2
+
(U +RS •∇U)

c2
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the vector from the geocenter to the station. The RS•ÑU term is an expansion of the 
potential for the station displaced by RS from the geocenter. The LB = 1.550519768´10–8 
removes the mean rate from the velocity and potential terms.  
 
The vE•vS/c2 part of eq. (2) can be integrated by parts to get a daily vE•RS/c2 variation in 
time. The daily correction can reach ±2.1 µsec. The second term from the integration by 
parts is small enough to ignore.  
 

   (5) 

 
For the idealized case of a massless Earth in an elliptical orbit  
 

  , (6) 

 
where rE is the position of the Earth’s center with respect to the solar system barycenter. 
For perturbed orbits, the 2rE•vE/c2 term can be replaced with an integrated value, a series, 
or a function of ephemeris positions and velocities. The Earth’s ephemeris is interpolated 
from the ephemeris file to get rE, vE, and potential. For the TAI to TDB transformation, 
the largest of the periodic terms, the “elliptical” term, is a 1.66 msec annual term that 
passes through zero phase in early January, but there are smaller effects from Jupiter (22 
µsec), Saturn (5 µsec), and the Moon (2 µsec) [Moyer, 1981ab; Fairhead and Bretagnon, 
1990; Harada and Fukushima, 2003]. Note that in the 2.5 s of the round-trip light time, 
the daily term can change up to 0.4 ns and the annual term can change by 0.8 ns. These 
relativistic corrections alter the computed ∆t interval and are necessary for accurate LLR 
analyses. The LLR software uses Moyer’s formulation that depends on ephemeris 
positions and velocities of the Earth, Moon, Sun, and planets. Though only accurate to a 
few µsec, that accuracy is sufficient for range computation accuracies <1 mm. There are 
two requirements, one on the radial position accuracy at a time and the other on the 
change in TDB−TAI during the ~2.5 s round trip. Since the Moon’s radial velocity is 
<100 m/sec the first only requires 10 µs accuracy. The second requirement requires 12 µs 
accuracy for the amplitude of the annual term, 6 µs at 1/2 yr, and 1 µs accuracy at 1 
month. Moyer [1981b], Fairhead and Bretagnon, [1990], and Harada and Fukushima, 
[2003] present trigonometric series. The latter two are extensive and very accurate series. 
As an alternative, eq. (4) can be integrated numerically. A very accurate numerically 
integrated version of TDB−TT is available with the DE440 ephemeris [Park et al., 2020].  
 
The relativistic time corrections are iterated. Expressions (5) and (6) require the 
orientation of the station vector with respect to the Earth’s velocity in a consistent frame, 
the station vector is rotated from a body-fixed frame to a space-fixed frame allowing for 
UT1, polar motion, precession, and nutation. Tides are too small to make a significant 
difference for relativity. Expression (5) is calculated with the Moyer series for the orbital 
terms. With iteration, the UTC value at T1 is converted to TDB.  
 

TDB ≈ TAI + vE •RS

c2 +32.184 sec+Orbit Terms

TDB ≈ TAI + vE •RS

c2 +
2rE •vE
c2 +32.184 sec
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The LLR software does not introduce the average rate differences that are part of the 
Geocentric Coordinate Time (TCG) and Barycentric Coordinate Time (TCB) scales 
(chapter 10 of the IERS Conventions). The fractional changes in these two rates are 
denoted LG and LC, respectively, which combined give LB. As a consequence, there are 
differences in the length scales that will be addressed below (§ 3.10). We also note that, 
with the notation in chapter 10 of the IERS Conventions, TDB0 ≈ −P0 ≈ −P(T0) ≈ −65.5 
µsec. The LLR software does not introduce this constant, which appears in the TT to 
TCB transformation, into the TAI to TDB transformation. The TDB0 constant should be 
used with a numerically integrated TDB−TT value because it is the value of the series at 
the lower limit of the integration. It should not be used with the series.  
 
3.8  Earth Orientation at T1  
The station’s orientation in space depends on terrestrial UT1, polar motion, precession, 
and nutation. The precession of the equinox and the evolution of the obliquity eA(t) are 
computed with polynomial expressions. The IAU 2006 expressions for precession angles 
zA, qA, and zA and obliquity eA are given by Hilton et al. [2006]. The “time” tracking the 
angle of rotation of the Earth with respect to the precessing equinox, the Greenwich 
Mean Sidereal Time (GMST), is a polynomial function of UT1. An expression for GMST 
in seconds that is compatible with the IAU 2006 precession polynomials comes from 
evaluating eq. (33) in Williams [1994].  
 
 GMST = 24110.54841 + 8640184.7944792 TU + 0.0927722 TU 2 − 2.0x10–6 TU 4   
 + Mod(UT1, 86400) (7) 
 
In centuries TU = [(MJD−51544.5)+(UT1−MJD)]/36525, where UT1−MJD is expressed 
in days. The large coefficient of TU causes the number of terrestrial rotations per year to 
be one more than the number of solar days in a year. The nonlinear terms do not imply 
nonuniform rotation with respect to space for uniformly increasing UT1. Rather they 
reflect the nonlinear motion of the mean equinox. The cubic term is sufficiently close to 
zero to ignore. The UT1 in the Mod function includes fast variations.  
 
The nutation angles are ∆y for (left-handed) ecliptic longitude and ∆e for obliquity., The 
equation of equinoxes ∆y coseA(t) can be added on to GMST. With additional terms at 
the period (18.6 yr) and half period (9.3 yr) of the lunar node, we get Greenwich Sidereal 
Time (GST). With GMST and ∆y in seconds of arc, then  
 
 GST = GMST + ∆y coseA(t) + 0.00264 sin Ω + 0.000063 sin 2Ω  (8) 
 
The node-related corrections are a dynamical consequence of the motion of the equinox 
and obliquity.  
 
UT1 and polar motion X and Y include small semidiurnal and diurnal tidal variations. The 
small rapid UT1 and polar motion corrections are added on to the interpolated values 
from the input table (§ 3.5). In the LLR software the fast variations arise from the M2, 
S2, K2, N2, K1, O1, P1, Q1, and sidebands of the K1 and O1 tides. Table 4 lists the 10 
corresponding arguments. The combined Tables 8.3a, 8.3b, and 5.1b of the IERS 
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Conventions give the amplitudes for UT1 and combined 8.2a, 8.2b, and 5.1a give 
amplitudes for polar motion. The largest examples of these corrections, ~1 cm, occur for 
the M2, K1, and O1 tides.  
 
Table 4. Four semidiurnal and six diurnal tidal arguments. For the angles in the 
arguments: G is GMST, l is lunar mean anomaly, F is lunar mean argument of latitude, Ω 
is lunar node, D is mean elongation of the Moon from the Sun, mean lunar longitude is 
L=F+Ω, and mean solar longitude is L¢ = L−D.  
 

Name  Argument  Period in days 
K2  2G  0.498635 
S2  2G–2L¢  0.500000 
M2  2G–2L  0.517525 
N2  2G–2L–l  0.527431 
K1 sideband  G–Ω  0.997123 
K1  G  0.997270 
P1  G–2L¢  1.002745 
O1  G–2L  1.075806 
O1 sideband  G–L–F  1.075976 
Q1  G–2L–l  1.119515 

 
To rotate the station vector from an Earth-fixed frame to a J2000 space-related frame, the 
sequence of rotations is  
 
 R3(zA−90º) R1(−qA) R3(90º+zA) R1(–dX) R2(–dY) R1(–eA) R3(∆y) R1(eA+∆e) R3(−GST) P(X,Y) ,
 (9) 
 
where P is a matrix for polar motion X and Y, dX and dY are small rotations of the Earth’s 
orientation, and R1, R2, and R3 are rotation matrices about the first, second, and third 
axes. The LLR software can solve or correct for small rotations dX and dY at the time of 
observation that include (equinox and obliquity related) constant rotations, (precession 
and obliquity related) rates, and corrections to periodic nutation terms at 18.6 yr, 9.3 yr, 1 
yr, 1/2 yr, and 1/2 month. A positive rotation of a vector is equivalent to a negative 
rotation of the frame.  
 
Terrestrial orientation accurate to 0.03 mas is needed for 1 mm station vector accuracies 
in space. The LLR software does not implement all of chapter 5 of the IERS 
Conventions. Also, it does not apply a nominal value for the variable free core nutation 
(FCN) at 430.2 days (retrograde), which is <0.3 mas in size.  
 
3.9  Solid-Body Tides on Earth  
The main tidal displacement of the station is caused by degree-2 tides raised by the Moon 
and Sun. Vertical lunar tides can vary between +27 and −14 cm and solar tides span +10 
to −5 cm. Horizontal tides can reach ±5 and ±2 cm. For degree-2 elastic tides with vector 
u pointing from the center of the Earth toward the surface station and u¢ pointing toward 
the tide-raising body, the station displacement is  
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   . (10) 

 
The radius of the Earth is R, its mass is m, the mass of the tide-raising body is M¢, and its 
distance is r¢. Degree-3 tides are also computed. They are much smaller than the degree-2 
tides. Our nominal degree-2 Love numbers are h2=0.6078 and l2=0.0847 and the degree-3 
values are h3=0.292 and l3=0.015. These values are compatible with the real values 
recommended in chapter 7 of the IERS Conventions. Moon-raised third-degree tides on 
the Earth are only 1.7 mm high and Sun-raised third-degree tides are very small. The 
evaluation of equation (10) includes a constant part, which is not modified.  
 
There are corrections to the global degree-2 tidal calculations. They arise from two 
causes: the oblate core-mantle boundary, and tidal dissipation. Both causes affect in-
phase tides; dissipation also shifts the phase. The software applies in-phase and out-of-
phase corrections to the vertical tides for the 10 tidal components of Table 4. The largest 
correction is 12 mm for K1. The K1 sideband shifts 2 mm and the P1 tide shifts 1 mm. 
Extensive tables are given in chapter 7 of the Conventions. The horizontal correction is 
<1 mm and is ignored.  
 
For each station, 3-dimensional (up, east, north) ocean loading tides are computed for the 
10 tidal arguments in Table 4. The coherent center of mass correction is included. The 
stations in Table 1 have extensive observations and we input tables that are based on the 
FES2004 tidal model. For the continental LLR sites, ocean loading amplitudes are less 
than 1 cm, but for the mid-ocean Haleakala site 3 amplitudes exceed 1 cm. The ocean 
loading website at http://holt.oso.chalmers.se/loading/ is established by M. S. Bos and H.-
G. Scherneck.  
 
The LLR software departs from the IERS Conventions in several ways. The evaluation of 
the main tidal distortion from equation (10) uses real Love numbers; the phase-shifted 
components are evaluated separately. For the small global and ocean loading corrections, 
the software does not attempt to correct the slow zonal tides, since those corrections are 
predicted to be <1 mm. Also, we question whether the corrections can be extrapolated to 
18.6 yr using an Andrade-type function; that type of extrapolation does not work for long 
period tides on the Moon [Williams and Boggs, 2015]. The LLR software does not 
implement the latitude dependence of the Love numbers, a 0.1% correction (<1 mm) for 
vertical tides. The IERS Conventions document uses different phase conventions than the 
ocean loading website. Also, the two ocean loading formats appear to use different 
directions for horizontal tides. Analysts need to be careful with details. The LLR software 
uses cosines and sines of the arguments in Table 3. We have our own solid-body tidal 
expansion, which we used to confirm the global corrections and their phases. The 
FES2004 ocean model with output in the HARPOS format was the source for the LLR 
ocean loading tables, but we altered the phases to match the arguments in Table 4.  
 
 
 

ΔR = M 'R
4

mr '3
h2
2
3 u•u '( )2 −1#
$

%
&u+3l2 u • u '( ) u '− u•u '( )u#$ %&
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3.10  Relativistic Adjustments to the Station Vector  
We need to transform the geocentric station vector RS from a terrestrial frame compatible 
with TAI or TT to the solar system barycentric frame compatible with TDB. The Lorentz 
contraction of RS is  
 

   . (11) 

 
The Earth’s speed is ~30 km/sec so the Lorentz contraction of the Earth is ~3.2 cm in the 
velocity and anti-velocity directions.  
 
In addition, there is a relativistic adjustment to the scale of RS  
 

   , (12)  

 
where the scale parameter is LC = 1.480827´10–8 and UE is the geocentric solar potential 
GMS/rSE that depends on solar mass MS and distance rSE. The scale change is 16 cm and 
there is a ±1 mm annual variation due to the eccentricity of the solar orbit. The effect on 
scale from the potential due to the Moon and planets is very small and is ignored. IERS 
Conventions section 11.2 deals with these spatial adjustments.  
 
3.11 Up-Leg Light Time Iteration for T2, Position, and Orientation of the Moon  
The T1 time is established in UTC and TDB, so the next step is to compute T2, the time 
of reflection. Because the Moon is moving ~1 km/sec with respect to the Earth and the 
Earth is rotating 465 m/sec at the equator, the T2 computation requires iteration. As a 
first approximation to T2, to start the iteration half of the observed light time is added on 
to T1. The position of the Moon with respect to the Earth and solar system barycenter is 
obtained from a numerically integrated ephemeris (e. g., DE440 [Park et al., 2020] ]). At 
the T2 time, the orientation of the Moon (physical libration Euler angles) is obtained 
from the ephemeris file, the rotation matrix between the lunar body and space frames is 
set up, and the Moon centered retroreflector vector is rotated into the space-fixed frame.  
 
Unlike the Earth, it is not necessary to transform the T2 time to a Moon centered or 
surface related frame. The latter would be necessary if one-way ranges relied on a clock 
on the lunar surface.  
 

3.12 Tidal Displacement on the Moon  
Earth caused vertical degree-2 tides on the Moon vary by roughly ±0.1 m, see Figure 4. 
Horizontal tides vary by about half of that amount, see Figure 5. Equation (10) is 
evaluated with the radius of the Moon for R and the lunar mass for m. Time-varying tides 
caused by the Sun are ~2 mm in height. Degree-3 tides are <1 mm, but are calculated. 
Appropriate model Love numbers are h2=0.0423 and l2=0.0107, h3=0.0234, and 
l3=0.0030 [Willliams et al., 2014b; Williams and Boggs, 2015]. The degree-2 Love 
numbers can be either input or solution parameters.  
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Figure 4. Vertical elastic tides at the five retroreflector locations for interval 2000–2006.  
 

 
Figure 5. Horizontal tides at the Lunokhod sites for the interval 2000–2006.  
 
The effect of tidal dissipation is added for the two largest tides with periods of 27.555 d 
for argument l and 27.212 d for F. Small cosine and sine corrections are added from an 
internal table for the 5 retroreflector sites (Appendix A1). The dissipation factors h2/Qh 
for vertical and l2/Ql for horizontal may be either input or solution parameters. The size 
of the dissipation correction is ~2 mm or less.  
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Appendix A2 has the constant tidal components (X, Y, Z, Up, East, North) for the 5 
retroreflector sites. The elastic values are given for the DE440 displacement Love 
numbers. The table results from phase shifting the lunar tidal variations in Williams and 
Boggs [2015].  
 
There is a pole tide on the Moon due to changes in the direction of the spin vector; see 
Appendix C of Williams and Boggs [2015] for the potential and rotation rate terms. The 
size is calculated to be <0.2 mm. Consequently, it is not included in the model for lunar 
displacement.  
 
3.13 Thermal Expansion of Reflectors  
The retroreflectors are subject to large monthly variations of temperature. At the equator, 
the lunar surface can reach ~386º K during the day (albedo 0.08) and ~100º K at night. 
Although the corner cubes have low thermal expansion coefficients, the Lunokhod rovers 
and the aluminum structures of Apollo reflectors expand and contract by one (Apollos) to 
several (Lunokhods) millimeters during the 29.5 d synodic month. Accurate thermal 
models are complicated. This section presents simplified models that depend on heating 
by the Sun and heating from the lunar surface.  
 
The simplest model has the retroreflector temperatures T proportional to the lunar surface 
temperature. Using a constant temperature at night, the day–night temperature difference 
is proportional to  
 

 𝐺(𝑇) = 6	1.36	 <
()* +
()*,

=
!
" − 0.36					if cos 𝑧 > 0.0049 cos𝜙

	0																																									if cos 𝑧 ≤ 0.0049 cos𝜙
 (13) 

 
where z is the zenith angle of the Sun and f is the latitude of the lunar site. The vertical 
displacement is proportional to XT G(T), where XT is the vertical variation. The Lunokhod 
arrays are offset forward and to the right of the rover center so there is also a horizontal 
displacement proportional to G(T).  
 
Equation (13) would be good if the Apollo retroreflectors were horizontal. A more 
complicated model allows for the tilt of the Apollo retroreflectors. For the Apollo arrays 
oriented perpendicular to the mean Earth direction, there is primary heating by the Sun 
and secondary heating from the lunar surface.  
 

 𝐺(𝑇) = F	

	
1.15(cos 𝜂 + 2.30𝑓 cos 𝑧)

!
" − 0.38𝑓

!
" cos

!
" 𝜙 			if cos 𝜂 > 0, cos 𝑧 > 0

	1.42𝑓
!
" cos

!
" 𝑧 − 0.38𝑓

!
" cos

!
" 𝜙 				if	 cos 𝜂 ≤ 0, cos 𝑧 > 0 . 0049 cos𝜙

	0																																																														if cos 𝑧 ≤ 0

						

 (14) 
 
Angle h is between the solar direction and the normal to the array face. The Apollo 
arrays are insulated on bottom and sides; f gives the fraction of the lunar surface seen by 
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the top face of the reflector. For the numerical factor XT of G(T) to be the maximum 
vertical displacement, the numerical coefficients are similar for the 3 Apollo reflectors, 
and eq. (14) is compatible with the 3 maximum displacements to ~4%. The fraction f that 
depends on the nominal array tilt is given in Table 5.  
 
Allowing for the nearly vertical sides of the Lunokhod rovers, there is heating from the 
lunar surface and from direct sunlight.  
 

 𝐺(𝑇) = M	1.31 N
(()* +./.0 *12 +)

()*,
O
0/5

− 0.33					if cos 𝑧 > 0

		0																																																										if cos 𝑧 ≤ 0
 (15) 

 
We had to guess the thermal properties of the Lunokhod rovers so the 0.1 factor of sin z 
for the sides is approximate. Multiply G(T) by the maximum vertical displacement XT. 
Note that the two Lunokhod rovers are similar, but not identical. Lunokhod 1 has the lid 
closed whereas Lunokhod 2 has the lid open. Also, the tub dimensions are somewhat 
different. For the ratio of horizontal to vertical displacements see Table 5. For example, a 
5 mm vertical expansion would be accompanied by a 6 mm expansion forward and a 2 
mm expansion to the right side. The rovers are supposed to be oriented toward the 
azimuth of the mean Earth direction.  
 
Table 5. Ratio of offsets of arrays from the spacecraft center at ground to height and also 
fraction f seen of lunar surface and tilt to mean Earth direction.  
 
Reflector Forward Left Up f Tilt  
Ap 11 0 0 1.0 0.13 23.5º  
Ap 14 0 0 1.0 0.10 17.9º  
Ap 15 0 0 1.0 0.14 26.4º  
Lk 1 1.25 -0.4 1.0 1.0 50.0º  
Lk 2 1.25 -0.4 1.0 1.0 39.5º  

 
Figure 6 shows the temperature function G(T) for several reflectors. The black line is eq. 
(13) that mimics the lunar surface temperature. Equation (14) is evaluated for Apollos 11 
and 14. Sunrise at Apollo 11 and sunset at Apollo 14 illuminate the rear of the reflectors, 
which are insulated. Heating for that part of the curves comes from the lunar surface. 
Apollo 15 will be close to the black line. The two Lunokhods have similar curves from 
eq. (15) represented with red.  
 
The Apollo reflectors are low, a few decimeters, and are expected to vary by 1–1.5 mm. 
The Lunokhod arrays are 1 m high and might vary by 5 mm vertically. The software can 
solve for the vertical expansion coefficients XT for the 5 reflectors. We tried the simple 
thermal expansion model of eq. (13) and the two component models of eqs. (14) and (15). 
The improvement in the rms residual was slight for both approaches. Thermal expansion 
correlates with the equivalence principle test.  
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Figure 6. Temperature functions G(T). The black curve mimics the lunar surface 
temperature. The colored curves are for individual retroreflectors.  
 
3.14 Lorentz Contraction and Relativistic Scale at the Moon  
We need to transform the Moon centered reflector vector RR from a lunar frame to the 
solar system barycentric (SSB) frame compatible with TDB. Analogous to section 3.10, 
the Lorentz contraction is  
 

   . (16)  

 
The Lorentz contraction of the Moon’s radius is ~9 mm in the velocity (vM) and anti-
velocity directions.  
 
Analogous to the Earth, the Moon centered reflector vector is scaled by  
 

  , (17) 

 
where the scale parameter is LM = 1.4825´10–8 and UM is the solar potential at the Moon 
GMS/rSM. The scale change is about 4 cm and the annual variation is only ±0.3 mm. 
Though small, the annual variation for Earth and Moon radii combine to cause ±1.3 mm 
of range signal. The effect on scale from the potential due to the Earth and other planets 
is small and is ignored.  
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3.15 Up-Leg Range Vector  
The vector between the terrestrial station at T1 and the lunar retroreflector at T2 is  
 
 r12 = rM(T2) + RR(T2) – rE(T1) – RS(T1)  , (18) 
 
where r12 = rM(T2) – rE(T1) is the difference in the solar system barycentric coordinates 
of the centers of the Earth and Moon. The station vector RS and reflector vector RR 
include tidal and relativistic corrections.  
 
3.16 Atmospheric Delay  
To get the sine of the elevation angle, the unit vector r12/r12 is dotted with the ranging 
station’s zenith unit vector normal to the Earth’s flattened ellipsoid. The atmospheric 
delay model follows chapter 9 of the IERS Conventions, except that a constant a3 value is 
used. The LLR elevation angles are normally above 20º, whereas a3 mainly affects lower 
elevations. Ranges from the McDonald 2.7 m (1970–1985) and early OCA (1984–1986) 
sites used red ruby lasers (0.694 µm), but subsequent ranges use green beams (0.532 µm) 
from frequency-doubled Nd:YAG lasers. Starting in March 2015, many infrared ranges 
(1.064 µm) have been obtained at OCA. The model in the IERS Conventions includes a 
dependence on color. At the zenith and on the geoid, one atmosphere of air delays the 
range by 2.4 m, so the delay can be ~7 m at 20º elevation. These delays are scaled by the 
atmospheric pressure at the station with corrections for temperature and humidity.  
 
Table 6. Mean pressure and temperature and their rms scatter for the LLR sites with 
extensive data sets. Pressures and temperatures were measured during ranging sessions.  
 

 
  Station Site  Mean Pressure, 

mbar 
RMS Pressure 

Variation, mbar 
Mean 

Temperature, 
ºC 

RMS 
Temperature 
Variation, ºC 

McDonald  
 2.7 m,  Texas  

798 4 14 6 

MLRS Saddle,  
  Texas  

808 3 11 7 

MLRS Mt. 
Fowlkes,  
  Texas  

800 4 14 6 

OCA/MEO,  
  France  

875 7 9 6 

Haleakala,  
  Hawaii  

709 2 6 3 

Apache Point,  
  New Mexico  

728 4 8 6 

Matera, Italy  962 4 13 7 
Wettzell, 
Germany  

944 4 12 8 
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Table 6 gives the average pressures at LLR ranging stations with long spans of data. 
Since the LLR observatories are usually located on mountains, their mean air pressure 
values are less than sea level, which reduces the atmospheric delay. Nonetheless, an 
accurate atmospheric delay model is critical. Clear weather correlates with higher 
pressure biasing the mean pressure. 
 
The earliest span of McDonald data appears to have pressures that are biased low. Prior 
to February 13, 1971 (MJD 40995) we add 7 mbar to the McDonald pressures. Another 
oddity, the mean pressure difference between the McDonald 2.7 m site and the Mt. 
Fowlkes site does not match the height difference.  
 
3.17 Shapiro Delay  
Light has a longer path when passing through a gravity field. From a Newtonian 
perspective, light appears to be slowed. The Shapiro delay [Shapiro, 1964] is computed 
with a logarithmic form.  
 

    (19) 

 
The gravitating body j has mass Mj at distances rSj and rRj from the Earth station and 
Moon retroreflector, respectively. Scalar r12 comes from equation (18). The Shapiro time 
delay is proportional to (1+gPPN), and the Parameterized Post-Newtonian gPPN that 
characterizes the curvature of space is 1 for general relativity. The average solar potential 
at a 1 au distance is <U>/c2 = 0.99´10–8. The Sun caused mean delay for LLR is ~50 
nsec, equivalent to ~7.5 m. The annual variation is ±12 cm. The delay due to the Earth’s 
gravity is ~4 cm, but it varies with elevation angle. The delay from the Moon is <1 mm. 
The delay from Jupiter is ~1.4 mm, but its variation is <1 mm. The LLR software 
computes the delay from the gravity fields of Sun and Earth, but not the Moon, Jupiter, 
and other distant planets.  
 
Most of the solar time delay acts like a scale change in the distance, which is not unique, 
but the ±12 cm annual variation confers some sensitivity to the Parameterized Post-
Newtonian gPPN.  
 
3.18 Corner Cube Delay  
The five lunar retroreflectors consist of arrays of solid corner cube prisms. The Apollo 
corner cubes have a front face diameter of 3.8 cm. The Lunokhod prisms are larger with a 
triangular front face. There are three reflections in the corner cubes, but it is sufficient to 
consider the path length from the front face to the vertex. The path length in the fused 
silica prisms depends on the distance h from the front face to the rear vertex. Delayed by 
an index of refraction n, the apparent distance from front to bounce is nh so that the T2 
bounce point acts like it is (n–1)h behind the vertex. We correct the bounce point to the 
front face by adding  
 
 dtCC = nh/c  (20) 

δt j =
(1+γPPN )GM j
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to the computed incoming T2−T1 and outgoing T3−T2 light times. Our derived 
retroreflector coordinates are at the center of the array at the front face.  
 
The Apollo corner cubes have h=27.5 mm and the Lunokhod prisms have h=43.5 mm. 
With an index of refraction of 1.4555 (Heraeus) the (n–1)h values are 12.5 mm and 19.8 
mm, respectively, and nh values are 40.0 and 63.3 mm, respectively. The one-way delays 
are then 133 ps and 211 ps. The delays are slightly longer for off-axis rays and the 
refractive index depends on wavelength, but for our conditions these effects amount to 
less than 1 mm.  
 
3.19 Biases  
We sometimes see a range bias for a station for a certain interval of time. Sometimes the 
cause can be identified. In the case of Haleakala, there were different combinations of 
four rings of lenses used for ranging and calibration. Initially, each ring had a separate 
time delay, but later they were matched up. We have separate biases for those different 
combinations of rings. In 2015, OCA began to obtain frequent ranges using infrared, 
while also obtaining ranges in the green. Consequently, we added bias parameters for 
differences between green and infrared ranges.  
 
The LLR software can apply or solve for biases. A bias dtb is added on to the computed 
value of time delay. We also have biases covering the total data span for each station. The 
path length inside the telescope to the intersection of axes can be difficult to measure 
accurately, which can cause small mean range differences between stations.  
 
3.20 Converged T2  
Shapiro delay, atmospheric delay, corner cube delay, and any bias are added on to 
r12/c=|r12|/c from equation (18) to get T2−T1, the up-leg light time, in TDB time units.  
 

  (21) 

 
The computation for T2−T1 is iterated until the change is <0.864 psec.  
 
With the T2 time established, the solution parameters associated with the Moon require 
that partial derivatives of the range with respect to those parameters be computed. 
Examples of geometric parameters include retroreflector array X, Y, Z coordinates and 
rates, displacement Love numbers h2 and l2, dissipation related parameters h2/Qh and l2/Ql 
associated with the Love numbers (Appendix A.1), and range scale and scale rate. 
Geometric partials are solely generated in LPRED. Dynamical parameters are associated 
with the lunar orbit and orientation: the orbit and physical libration initial conditions, 
GM(Earth+Moon), tidal potential Love number k2 and a tidal time lag associated with 
dissipation, moment of inertia combinations b=(C−A)/B and g=(B−A)/C, second- and 
third-degree gravity harmonics, and core-mantle boundary dissipation and flattening. The 
dynamical partials require that partials of the lunar position and Euler angles be supplied 

T2(TDB)−T1(TDB) = ρ12
c
+δtATM + δt j

j
∑ +δtCC +δtB
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from files. LPRED converts those partials of position and orientation into partials of 
range using equation (18) and the chain rule.  
 
3.21 Down-Leg Light Time  
The down-leg light-time iteration starts with an initial estimate of T3(TDB)−T2(TDB) 
based on observed [T3(UTC)−T1(UTC)] minus computed [T2(TDB)−T1(TDB)]. The 
Earth-fixed station vector at T3 includes the slow station motion and pole tide from the 
T1 calculation. The Earth and station vector are oriented in space with updated values at 
T3 for GMST(UT1), precession, and nutation. However, the small semidiurnal and 
diurnal corrections to UT1 and polar motion at T1 are used in the orientation.  
 
The small tidal corrections at T1 are added on to the station vector at T3. The main solid-
body tides at the station are computed and added on to the geocentric station vector. The 
Lorentz contraction and relativistic scale are applied. The atmospheric and Shapiro delays 
are computed and applied. After iteration, the analog of equation (21) gives 
∆t23=T3(TDB)−T2(TDB).  
 
3.22 Total Light Time  
The total computed light time [T2(TDB)−T1(TDB)] + [T3(TDB)−T2(TDB)] is combined 
with the difference in the relativistic time transformations at the transmit and receive 
times [T1(TDB)−T1(TAI)] − [T3(TDB)−T3(TAI)] from eq. (5). This gives the total light 
time T3(TAI)−T1(TAI), which is compared with the observed value of 
T3(UTC)−T1(UTC) to get the observed minus computed (O–C) residual.  
 
Many partial derivatives of range with respect to solution parameters are computed. The 
partial derivatives at T1, T2, and T3 are combined to get the partials for the total light 
time.  
 
This completes the overview of the LPRED model for range. We continue with a list of 
solution parameters and possible model changes.  
 
4.  Solution Parameters  
The range model is the focus of this memo, but many of the values of model parameters 
can be modified with solution parameters. Nominal values of most solution parameters 
can be input and all solution parameters ∆x can be constrained with linear combinations 
of the form a∆x=c or a∆x1+b∆x2=c. The following are important solution parameters that 
may be used with a standard LLR weighted least-squares solution.  

• Station coordinates: radius, east longitude, and latitude.  
• Station motion: rates up (radial), east, and north.  
• Retroreflector coordinates: lunar X, Y, Z using a principal axis frame.  
• Terrestrial Love numbers h2 and l2.  
• Smoothed stochastic corrections for UT1 and polar motion. Corrections depend 

on the uncertainty in the input table values.  
• Earth orientation: 2 constant angles (at J2000) and 2 rates (related to precession 

and obliquity rates). These angles are small rotations about two axes, one pointing 
toward the precessing equinox and one 90º ahead on the equator.  
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• Earth orienting nutations: cosine and sine coefficients for 2 axes for each of 4 
nutation periods: 18.6 yr, 9.3 yr, 1 yr, and 1/2 year. The same two orientation axes 
are used as for the preceding orientation.  

• Lunar Love numbers h2 and l2 and dissipation related h2/Qh and l2/Ql.  
• Biases for specified stations and time spans. Overall biases between stations are 

typically a few cm. Bias rates can be solved for, but are not common. Infrared 
biases can be separate from visual wavelength biases.  

• GM of Earth+Moon.  
• Six set III parameters that specify 6 corrections to the initial condition for the 

lunar orbit integration. The set III parameter corrections are increments that have 
zero nominal values.  

• Five terrestrial tidal dissipation time delays (phase shifts): 1 for zonal tides, 2 for 
diurnal tides, and 2 for semidiurnal tides [Williams and Boggs, 2016].  

• Six initial conditions for the integration of the orientation of the Moon’s crust and 
mantle. Three are Euler angles and 3 are angular rates about the X, Y, and Z 
principal axes.  

• Three angular rates about the lunar X, Y, and Z axes for the fluid core initial 
conditions.  

• Lunar Love number k2.  
• Time delay tM associated with k2 and tidal dissipation. The lunar tide is evaluated 

at time t–tM for the dynamical model.  
• An energy dissipation parameter for relative motion at the lunar core-mantle 

boundary [Williams et al., 2001].  
• A flattening parameter for the lunar core-mantle boundary.  
• Lunar moment of inertia expressions b=(C−A)/B and g=(B−A)/C plus J2 and 7 

third-degree gravity harmonic coefficients. A, B, and C are the principal moments 
of inertia about the three principal axes, A<B<C.  

• Cosine and sine coefficients for physical libration parameters associated with 
dissipation at 206 d = 7 months, 1 yr, 1095 d = 3 yr, and 2190 d = 6 yr (and 
sometimes 1 month) [Williams and Boggs, 2015]. Additional cosine and sine 
coefficients are available at 1306 d and 1643 d. The latter selections are empirical, 
but based on known periods [Rambaux and Williams, 2011].  

• Lunar orbit extra eccentricity rate.  
• Vertical thermal expansion of Apollo and Lunokhod structures.  

 
When joint solutions are made to produce a lunar and planetary ephemeris [Williams et 
al., 2013; Folkner et al., 2014], additional solution parameters are needed.  

• The mass ratio, Earth/Moon.  
• Set III corrections to the initial conditions of the planets from Mercury to Jupiter.  
• Solar J2.  

 
Solutions for gravitational physics parameters [Williams et al., 2004, 2009] may include:  

• PPN b and g.  
• Equivalence principle gravitational/inertial mass ratio for Earth.  
• Cos D and sin D coefficients in range.  
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• Rate of change of the gravitational constant G, as (dG/dt)/G.  
• Rate of change of solar mass, (dMS/dt)/MS, from J2000.  
• A factor to test geodetic precession rate.  
• Range scale factor and rate. The scale rate was used to determine a limit for any 

rate of change of the speed of light [Williams et al., 2014a].  
 
Other programs solve the least-squares equations and display post-fit residuals.  
 
5.  Toward an Improved Model  
For the LLR normal points, there is a spread of range accuracies that depends on the laser 
pulse width, the timing accuracy for a single detected photon, and the number of photons 
in each normal point. During the first 25 yr shown in Figure 1, the data noise was greater 
than the modeling error. During the last one or two decades, there have been ranges that 
are more accurate than our fits. Can future modeling improvements reduce the residuals 
further?  
 
The LLR model for terrestrial orientation from nutation and terms associated with the 
equation of equinox could be modernized. We note that the Earth’s J2 rate is changing 
[Cheng et al., 2013]. A solution parameter that alters the acceleration of precession may 
be useful.  
 
The atmospheric delay is meters in size. Very good accuracy is required for the 
atmospheric model. As the IERS Conventions notes, horizontal pressure gradients are a 
possible source of systematic error during off-zenith ranging sessions. The relevant 
horizontal scale for pressure gradients is set by the scale height, ~8.5 km, times the 
cotangent of elevation. Pressure gradients are not presently provided with the data.  
 
Does the pressure dependence of the atmospheric delay need a separate factor for each 
station? We note that the differences in the mean pressure at the three McDonald sites do 
not match their height differences.  
 
Is there significant thermal expansion and contraction of a telescope and its mount or is 
there a thermal influence on the delay calibration? The rms temperature variations in 
Table 4 are modest and the thermal effect on few-meter sized structures appears small.  
 
Fits over <10 yr of data have less rms scatter than the same spans with fits over the full 
50 yr span. Range residuals show small physical libration signatures. Spectra of residuals 
indicate that much of the libration noise is long period (≥2 yr). Some long-period 
adjustment of physical librations should tighten the rms scatter.  
 
The terrestrial model may have several millimeters of rms noise that might be improved. 
The lunar model has systematic effects in orientation that are not well understood. 
Possible improvements to the dynamical model are not part of this memo.  
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6.  Summary  
This overview of the data analysis program LPRED describes the LLR data in section 2 
and the model for terrestrial, orbital, and lunar effects that affect the range is in section 3. 
Common solution parameters are listed in section 4 and modeling concerns are discussed 
in section 5.  
 
 
Appendices  
 
A1.  Monthly Tidal Variations on Moon  
The physical librations are sensitive to multiple periods and the main (elastic-like) tidal 
displacements reach 0.1 m (Fig. 4), but there are also small phase shifts in the 
displacements due to tidal dissipation. The largest of these phase-shifted monthly tidal 
displacements on the Moon occur at the anomalistic (l) month (27.555 d) and nodical (F) 
month (27.212 d). The cosine and sine coefficients are given in Table A.1. DE440 used 
model values of h2/Qh = 1.0´10–3 and l2/Ql = 3.0´10–5. These should be considered as 
approximate and measurements would be valuable. With the model h2/Qh, the largest 
vertical displacements are 2.2 mm for Apollo 11 and 14. With the model l2/Ql, the largest 
horizontal displacements are a few tenths of a millimeter.  
 
 
Table A.1. The largest monthly tidal displacements. Multiply argument l terms by h2/Qh 
and F terms by l2/Ql.  
 
Reflector Arg Up 

cos 
m 

Up 
sin 
m 

East 
cos 
m 

East 
sin 
m 

North 
sos 
m 

North 
sin 
m 

Apollo 11 l -1.540 1.618 -2.924 -2.282 0.037 -0.064 
Apollo 11 F 0.050 0.000 -0.022 0.000 4.158 -0.010 
Apollo 14 l 1.229 1.800 -3.464 1.834 0.156 0.361 
Apollo 14 F -0.273 0.000 -0.086 0.002 4.289 0.008 
Apollo 15 l -0.204 1.484 -3.790 -0.326 0.206 -2.494 
Apollo 15 F 1.790 -0.001 -0.126 -0.011 2.767 -0.001 
Lunokhod 1  l 1.232 0.240 -1.119 2.338 -1.962 -2.048 
Lunokhod 1 F 1.806 0.000 1.614 -0.013 0.856 0.003 
Lunokhod 2  l -1.511 0.843 -1.828 -2.491 1.456 -1.841 
Lunokhod 2 F 1.527 0.000 -1.015 -0.010 2.411 -0.008 

 
 
A2.  Constant Tidal Displacements on Moon  
Table A.2 gives the constant tides from Earth and Sun, but not spin or 3rd degree tides, for 
the DE440 Love numbers h2 = 0.0423 and l2 = 0.0107.  
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Table A.2. Constant tides from Earth and Sun for the DE440 Love numbers h2 = 0.0423 
and l2 = 0.0107.  
 
Reflector X 

mm 
Y 

mm 
Z 

mm 
Up 
mm 

East 
mm 

North 
mm 

Apollo 11 441.2 27.0 0.8 415.5 -150.8 -4.2 
Apollo 14 482.6 -28.2 -5.9 468.2 118.2 23.8 
Apollo 15 416.6 2.9 22.5 383.3 -23.3 -163.2 
Lunokhod 1 197.5 47.5 -66.0 64.5 152.3 -135.2 
Lunokhod 2 294.8 -14.4 -14.0 214.9 -163.8 -119.7 

 
 
Abbreviations  
BCRS Barycentric Celestial Reference System, formerly BRS. Compatible with TCB.  
FCN Free Core Nutation. An ~14 month variation due to the fluid core.  
GCRS Geocentric Celestial Reference System, formerly GRS. Compatible with TCG.  
GMST Greenwich Mean Sidereal Time. The rotation of the Earth with the prime 

meridian referred to the slowly precessing equinox.  
GST Greenwich Sidereal Time. The rotation of the Earth with the prime meridian 

referred to the precessing and nutating equinox.  
IAU International Astronomical Union.  
ICRF International Celestial Reference Frame.  
IERS International Earth Rotation Service.  
ILRS International Laser Ranging Service.  
ITRF International Terrestrial Reference Frame.  
ITRS  International Terrestrial Reference System.  
JD Julian day.  
LLR Lunar Laser Ranging.  
MJD Modified Julian day, JD−2400000.5.  
PPN Parameterized Post-Newtonian. A gravitational formulation more general than 

General Relativity.  
SLR Satellite Laser Ranging.  
TAI   International Atomic Time. A continuous time scale for the Earth’s surface.  
TCB   Barycentric Coordinate Time. A solar system barycentric coordinate time.  
TCG   Geocentric Coordinate Time.  
TDB   Barycentric Dynamical Time. A solar system coordinate time used for JPL lunar 

and planetary ephemerides.  
TT   Terrestrial Time. TT = TAI + 32.184 sec.  
UTC   Universal Time Coordinated. This time, used for recording observations, 

experiences occasional leap seconds with respect to TAI.  
UT1 Universal Time. This representation uses the Earth’s rotation as a clock. Due to 

variations in rotation rate, it is not a uniform time scale.  
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